
J. Phys.: Condens. Matter 12 (2000) 1649–1655. Printed in the UK PII: S0953-8984(00)07997-2

The cooperative transport of electrons and protons in the
α-helix polypeptide chain

Bin Zhou†‡, Ji-Zhong Xu‡ and Jiu-Qing Liang‡§
† Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences,
PO Box 603-99, Beijing 100080, China
‡ Department of Physics, Hubei University, Wuhan 430062, Hubei, China
§ Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China

Received 21 September 1999, in final form 23 November 1999

Abstract. In this paper, we investigate the behaviour of electrons in the α-helix polypeptide chain
and show that an electron can be bound in the compression area of the proton sublattice and become
an electrosoliton state described by a bell-shaped electronic wave function. Due to the coupling
between the three hydrogen-bonded chains, symmetric and asymmetric electrosoliton–soliton pairs
are obtained.

1. Introduction

The charge transfer in hydrogen-bonded condensed matter, organic and biological systems is
an important and interesting problem. A polypeptide chain with helix structure may consist
of many hydrogen-bonded chains. For instance, an α-helical protein molecule composed of
a single helical polypeptide chain has three hydrogen-bonded chains. The ‘melting’ of an
α-helix structure can be performed only by the simultaneous breaking of a series of hydrogen
bonds; it is a cooperative process. In other words, the maintenance of the helix structure of a
polypeptide chain depends on the hydrogen bonds. In order to show the linking between three
hydrogen-bonded chains we draw a schema of the α-helix protein molecule structure:
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Obviously, interlinking between hydrogen-bonded chains depends on the α-carbon atom (Cα).
In our previous paper [1], we investigated the proton transport in the α-helix polypeptide chain.
In this paper, we investigate the charge transfer in the α-helix polypeptide chain.

As well know, many important properties of hydrogen-bonded system depend upon the
motion of protons, such as the phase transition of hydrogen-bonded ferroelectrics and the
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conductivity of ice. Solitonic defects are excited in the process of proton transfer, i.e. ionic and
bonding defects are formed. The former involve an intrabond motion of the (unique) binding
proton, while the latter result from interbond or intermolecule motion of the protons due to
rotations of the molecules (e.g. the water molecules in ice). It has been shown that the ionic (I−)
and bonding (B−) kink defects are carriers of a fractional negative charge so that their combined
dynamics generates a ‘proton hole’ transfer e−I +e−B = −e, where e > 0 is the unit charge of one
proton, to the next bond. On the other hand, the ionic (I+) and bonding (B+) antikink defects
are carriers of a fractional positive charge, so that their combined dynamics generates a proton
transfer (e+

I +e+
B = e) to the next bond. Antikinks excited in the proton sublattice possess excess

fractional positive charge, corresponding to localized compression in the proton sublattice (for
example, the hydroxonium ion H3O+ in an ice lattice), and kinks excited in the proton sublattice
possess excess fractional negative charge, corresponding to localized rarefaction in the proton
sublattice (for example, the hydroxyl ion OH− in an ice lattice). In fact, the hydrogen-bonded
chain can be considered to be composed of a proton sublattice and a heavy-ion sublattice. For
example, the ice lattice is composed of a proton sublattice (H+)x and a heavy-ion sublattice
(HO−)x . Considering the influence of the motion of the heavy-ion sublattice on the proton
sublattice, the component soliton model was suggested by some authors [2–6]. Because of the
interaction between two sublattices, soliton defects corresponding to the heavy-ion sublattice
localized deformation are excited [6]. On the other hand, there is a class of systems where
the protonic and the electronic nature of the conductivity coexist at least for certain ranges of
temperature [7, 8]. In biological systems, the coupling between proton and electron transfer is
responsible for some reaction processes, for instance, there is the coupling between proton and
electron transfer in charge rely system of α-chymotrypsin [9]. Thus, it is necessary to research
the behaviour of the electrons, i.e. investigate the influence of the deformation of proton and
heavy-ion sublattices upon the motion of electrons. (Abdullaev et al investigated only the
system of protons and electrons [10].) The cooperative transport of electrons and protons in a
simplex hydrogen-bonded chain was discussed in our previous paper [11]. This paper develops
from the simplex chain theory into the three-chain theory. For the sake of simplicity, we do not
alone consider the interaction between electron and heavy-ion sublattices but incorporate it into
the coupling between protons and electrons because interaction between proton and heavy-ion
sublattices is considered. The results in this paper show that one electron can be trapped by
the lattice defects (slow antikink–kink pair or fast antikink–antikink pair) in the hydrogen-
bonded chain. The bell-shaped electronic wave function (electrosoliton state) is localized
in the compression area of the proton sublattice. The lattice defects and electrosoliton state
propagate along the hydrogen-bonded chain with the same velocity in pairs, representing a
bound state called an electrosoliton–soliton pair, which possesses a fractional negative charge
[12]. Moreover, due to the coupling between the three hydrogen-bonded chains, symmetric
and asymmetric electrosoliton–soliton pairs are obtained.

2. Hamiltonian and equations of motion

Our theory for three hydrogen-bonded chains develops from the simplex chain theory. We
assume that the coupling between the hydrogen-bonded chains is a linear interaction, and
consider the interaction between electron and lattice defects in the hydrogen-bonded chains.
The total Hamiltonian of the system is

Htot = Hpe +Hph +Hh +Hi (1)
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where

Hpe =
∑
n,σ

[
1

2
m1

(
dun,σ

dt

)2

+
1

2
m1

(
c0

a

)2
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)2

+E0C
+
nσCnσ − J (C+

n+1,σCnσ + C+
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+
nσCnσ

]
(2)

is the Hamiltonian of the proton–electron system [12],

Hph = g1

∑
n,σ

(un,σ − un−1,σ )(ρn,σ − ρn−1,σ ) (3)

is the Hamiltonian for interaction between proton and heavy-ion sublattices [13],

Hh =
∑
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[
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(
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+
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(4)

is the Hamiltonian of the heavy-ion sublattice [6] and

Hi = g2

∑
n,σ

(ρn,σ − ρn−1,σ )(ρn,σ+1 − ρn−1,σ+1 + ρn,σ−1 − ρn−1,σ−1) (5)

is the Hamiltonian for interaction between hydrogen-bonded chains. a is the lattice spacing.
σ(= 1, 2, 3) is the sign of the chain. c0 and v0 are the characteristic velocities of the proton and
heavy-ion sublattices, respectively. ε0 is the barrier height in the double-well potential. un,σ is
the displacement of the nth proton (massm1) in the σ th chain along the chain from one of the
two minima in the double-well potential. ρn,σ is the displacement of nth heavy ion (mass m2)
in the σ th chain from its equilibrium position. u0 is the equilibrium position of the proton. g1

is the coupling constant between proton and heavy-ion sublattices in the σ th chain. g2 is the
coupling between hydrogen-bonded chains. E0 is the energy of the electron in the undistorted
chain, J is the intersite transfer energy and χ > 0 is the coupling constant of the interaction
between the electronic and the protonic subsystems. Finally, C+

nσ (Cnσ ) creates (annihilates)
one electron on the nth site of the σ th protonic chain. The same Hamiltonian can be used in
order to describe the dynamics of one electron hole in the chain. In this case, χ < 0, and C+

nσ

(Cnσ ) creates (annihilates) one hole on the nth site of the σ th chain.
The one-electron state can now be written [12]

| σ(t)〉 =
∑
n

Anσ (t)C
+
nσ |0〉 (6)

where the probability amplitude is normalized to unity i.e.
∑
n |Anσ (t)|2 = 1. The mean value

of the Hamiltonian in the system is written
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In the continuum approximation model, from the Lagrangian density we can derive the
equations of motion

ih̄
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∂t
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Obviously, equations (8)–(10) are coupled nonlinear equations.

3. Symmetric and asymmetric electrosoliton–soliton pairs

Under normal conditions, it is very difficult to obtain analytical solutions of equations (8)–
(10). But, the analytic solutions are found with ease in the following two specific cases:
(i) ρ1 = ρ2 = ρ3 = ρ, u1 = u2 = u3 = u; (ii) ρ1 = 0, ρ2 = −ρ3 = ρ, u1 = u0,
u2 = −u3 = u. Here we use a self-consistent method, and let self-consistent solutions of
equations (8) and (9) have the following relationship

|A|2 = q1ux (11)

where q1 is an undetermined coefficient. Substituting equation (11) into equation (9) and using
the variable transformation ξ = x−vt , we may reduce equations (9) and (10) to the following
equation [6]: (
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0
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2
0
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2
0
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and
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for case (i),
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2
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2
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for case (ii). Integrating equation (12), we obtain
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2
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2q2
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2
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and δ = ±1 is the polarity of the soliton. δ = 1 corresponds to the kink solution, and δ = −1
to the antikink. The solitons may be classified by their velocity into two modes as follows:

c2
0 +

χaq1

m1
+

g1a
2

√
m1m2

> v2 > v2
0 + P fast mode (19)

v2
0 + P − g1a

2

√
m1m2

> v2 > 0 slow mode (20)

where P = Ps = 4g2a
2/m2 for case (i); P = Pas = −2g2a

2/m2 for case (ii).
In an undeformed hydrogen-bonded chain (ρ1 = 0, u1 = u0), the electron is described by

the exciton state [14]. For a deformed hydrogen-bonded chain, substituting equation (11) into
(8), we have

ih̄
∂A

∂t
− (E0 − 2J )A + Ja2 ∂

2A

∂x2
− χa

q1
|A|2A = 0. (21)

Equation (21) is a nonlinear Schrödinger equation, whereG = −χa/q1 is a coefficient of the
nonlinear term of the NLS equation. IfG > 0 equation (21) has an envelope-soliton solution,
while for G < 0 equation (21) has a dark-soliton solution [15]. Here we are interested in the
envelope-soliton solution, so taking G > 0 (i.e. q1 < 0 for χ > 0 or q1 > 0 for χ < 0), the
solution of equation (21) is

A(x, t) =
(
G

8J

)1/2

sech

[
G

4Ja
(x − vt)

]
exp[i(kx − ωt)] (22)

where

k = h̄v

2Ja2
ω = E0 − 2J + Ja2k2 −G2(16J )−1

h̄
. (23)

Solutions u(x, t) and A(x, t) must satisfy self-consistent condition (11), so we have

G

8J
sech2 G
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2
νsech2

√
α

2
ν(x − vt) (24)

where q1 < 0 (for χ > 0), so taking the antikink solution (δ = −1), corresponding to the
compression area of the proton sublattice. From equation (24), we obtain

q1 = − a

2u0
(25)
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2

[
v2

1 + v2
0 + P ±

√
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4g2
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[

1 − χa2

2m1u0c
2
0

− 8J 2a2ε0

m1u
4
0c

2
0χ

2

]1/2

c0 (27)

is the velocity in the one-component soliton model of the simplex hydrogen-bonded chain. If
v2

1 > v
2
0 + P , v corresponds to the upper sign in equation (26) and v2 > v2

0 + P , i.e. q2 > 0.
Then, equations (14), (15) and (17) show that if the proton sublattice produces an antikink, the
heavy-ion sublattice produces an antikink as well. They form a fast antikink–antikink pair. If
v2

1 < v
2
0 + P , v corresponds to the lower sign in equation (26) and v2 < v2

0 + P , i.e. q2 < 0.
Then, the antikink in the proton sublattice and the kink in the heavy-ion sublattice will form a
slow antikink–kink pair. Here the antikink–antikink pair and antikink–kink pair are the lattice
defects, i.e. the defects in proton and heavy-ion sublattices. These lattice defects correspond to
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the compression area of the proton sublattice; thus, they have positive fractional extra charge
[12, 16].

From the above discussion, it can be concluded that in a deformed hydrogen-bonded chain
one electron is trapped by the lattice defects (slow antikink–kink pair or fast antikink–antikink
pair) with a fractional positive charge to form a bound state with a fractional negative charge.
The bell-shaped electronic wave function (electrosoliton state) is localized in the compression
area of the proton sublattice. The lattice defects and electrosoliton state propagate along the
hydrogen-bonded chain with the same velocity (given by equation (26)) in pairs, representing
a bound state called an electrosoliton–soliton pair (or radical electron–soliton state [12]).
However, under case (ii), if there is an antikink in one of two deformed hydrogen-bonded
chains, then there is a kink in the other deformed chain. Corresponding to the kink solution
(δ = 1), taking q1 > 0 (for χ < 0), equation (25) becomes q1 = a/2u0. Using the same
method, we can obtain the dynamics of one electron hole in the chain, where a bell-shaped
hole wave function is localized in the rarefaction area of the proton sublattice. One hole
is trapped by another kind of lattice defect (slow kink–antikink pair or fast kink–kink pair)
with a fractional negative charge to form a bound state with a fractional positive charge. On
the other hand, in an undeformed hydrogen-bonded chain, the electron is described by the
exciton state wave function. The validity of the continuum approximation and stability of the
electrosoliton–soliton pair have been discussed in detail in our previous paper [11].

The relative contraction of distance between neighbouring heavy ions in each chain can
be given by

L = − ∂ρ
∂x

= −q2δu0

√
α

2
νsech2

√
α

2
ν(x − vt). (28)

According to the discussion above, in case (i), three hydrogen-bonded chains produce local
contraction (or expansion) deformation simultaneously. In case (ii), one hydrogen-bonded
chain is undeformed, while if one of two deformed hydrogen-bonded chains is contracted,
the other deformed chain is expanded. This leads to the local twisting deformation of the α-
helix polypeptide chain. The electrosoliton–soliton pairs under case (i) and (ii) are called
the symmetric and asymmetric electrosoliton–soliton pairs, respectively. The symmetric
electrosoliton–soliton pairs, which contain three lattice defects and three electrosoliton states
described by a bell-shaped electronic wave function, correspond to the local contraction (or
expansion) deformation of the α-helix polypeptide chain. The asymmetric electrosoliton–
soliton pairs, which contains one lattice defect and one electrosoliton state, and one other kind
of lattice defect and hole state described by a bell-shaped hole wave function, correspond to
the local twisting deformation of the α-helix polypeptide chain.

Using equation (7) and the continuum approximation model, we have the energy of the
system

E = 3

(
E0 − 2J +

h̄2v2

4Ja2

)
+ λ

[
(m1 + q2

2m2)v
2 − u2

0χ
2

4J0

+(m1c
2
0 + q2

2m2v
2
0) +

4ε0

3aν0

√
2

α
+ (g1 + η)q2

]
(29)

where E = Es , q2 = qs2, λ = 30, η = g2qs2 for case (i); E = Eas , q2 = qas2, λ = 20,
η = − 1

2g2qas2 for case (ii) and 0 = (2νu2
0/3a)

√
α/2. Therefore, it is evident that Es > Eas .

Namely, under case (ii), the coupling between chains decreases the energy of the system. Thus,
the system is more stable than under case (i). On the other hand, it is shown from equation (29)
that the binding energy of the electrosoliton–soliton pair is u2

0χ
2/4J , that is, the internal energy
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of the bound state is lower than the sum of the internal energy of the free lattice defects and
free exciton.

From the above discussion, it follows that the interaction between the three hydrogen-
bonded chains is responsible for the existence of a symmetric and asymmetric electrosoliton–
soliton pair, which represents a bound state which a fractional negative charge. In order to
justify the physical interest of our model, we choose the experimental parameters as follows
[4, 14]: a = 2.76 Å, u0 = 0.37 Å, c0 = 1.1 × 105 m s−1, v0 = 0.1c0, m1 = 1.67 × 10−27 kg,
m2 = 17m1, g1 = 1.0 × 10−10 kg s−2, g2 = 1.0 × 10−10 kg s−2, ε0 = 0.67 eV,
J = 1.55 × 10−22 J, χ = 1.0 × 10−11 N. Substituting these parameters into equation (26), it
can be shown that the influence of the interaction between the three hydrogen-bonded chains
(i.e. the coupling constant g2) on the velocity of electrosoliton–soliton pairs is so small that the
velocities of symmetric and asymmetric electrosoliton–soliton pairs are about the same, i.e.
v � 0.84×105 m s−1. The velocity is in the range of the fast mode (equation (19)). Therefore,
according to the above discussion, fast-mode electrosoliton–soliton pairs are excited in α-helix
polypeptide chains. Using above experimental parameters, 0E = Es − Eas can be obtained,
i.e. 0E � 5.7 × 10−19 J. The asymmetric electrosoliton–soliton pair is more stable and more
easily excited than the symmetric. The binding energy of the electrosoliton–soliton pair is
2.2 × 10−22 J.

In conclusion, due to interaction between the three hydrogen-bonded chain (i.e. g2), the
fast-mode asymmetric electrosoliton–soliton pair is responsible for the cooperative transport
of electrons and protons in the α-helix polypeptide chain.
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